Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

P. R. Seshadri, ${ }^{a, b}$
 S. Selvanayagam, ${ }^{\text {b }}$
 D. Velmurugan, ${ }^{\mathbf{b}_{*}}$
 K. Ravikumar, ${ }^{\text {c }}$
 A. R. Sureshbabu, ${ }^{\text {d }}$
 K. Parthasarathy ${ }^{d}$ and
 R. Raghunathan ${ }^{\text {d }}$

${ }^{\text {a Department of Physics, Agurchand Manmull }}$ Jain College, Chennai 600 114, India, ${ }^{\mathbf{b}}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025 , India, ${ }^{\text {c Laboratory of } X \text {-ray }}$ Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {d }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.059$
$w R$ factor $=0.170$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1'-Methyl-4'-(3,4,5-trimethoxyphenyl)dispiro-[indene-2,3'-pyrrolidine- $2^{\prime}, 3^{\prime \prime}$-indole]-1,2",3(1"H)-trione

The pyrrolidine ring of the title compound, $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$, adopts a twist conformation. The structure is stabilized by weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as well as by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions.

Comment

Several unusual amino acids which contain the pyrrolidine motif have been investigated by Galeazzi et al. (1999). Furthermore, pyrrolidine compounds are capable of exhibiting antimicrobial and antifungal activity (Amal Raj et al., 2003). As part of our ongoing studies of spiro-pyrrolidines, the crystal structure analysis of the title compound, (I), has been carried out and the results are presented here.

The $\mathrm{C}-\mathrm{C}$ bond lengths (Table 1) in pyrrolidine ring B are longer than normal, perhaps due to the three bulky substituents. A similar effect has been found in a related structure reported by Jeyabharathi et al. (2001).

(I)

The geometry of the oxindole moiety is normal and agrees very well with that in other publications (Govind et al., 2003; Govindasamy et al., 1999; Sethu Sankar et al., 2002). The Cambridge Structural Database (CSD) November 2003 Release (Allen, 2002) contains 20 examples of this geometry.

The bond lengths and angles of the trimethoxyphenyl and indandione moieties are perfectly normal, as evidenced by 252 and 34 examples, respectively, in the CSD.

Ring A is in an envelope conformation with lowest asymmetry parameter (Nardelli, 1983) $\Delta C_{S}(\mathrm{C} 4)=0.009(1)$; atom C 4 deviates by 0.046 (2) \AA from the least-squares plane passing through the remaining four atoms (N1, C2, C5 and $\mathrm{C} 10)$ of the ring. Pyrrolidine ring B adopts a twist conformation, with puckering parameters (Cremer \& Pople, 1975) $q_{2}=$ $0.441(2) \AA$ and $\varphi=17.1(2)^{\circ}$, and asymmetry parameter $\Delta C_{2}(\mathrm{C} 13)=0.008(1)$. Ring C is also in a twist conformation, with puckering parameters $q_{2}=0.096(2) \AA$ and $\varphi=$ $-170.6(2)^{\circ}$, and asymmetry parameter $\Delta C_{2}(\mathrm{C} 29)=0.008(1)$.

Received 14 January 2004
Accepted 3 March 2004
Online 20 March 2004

Figure 1
View of (I), with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2
A view of the packing of the molecules in the unit cell; dashed lines indicate hydrogen bonds.

In addition to van der Waals interactions, the crystal structure is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions, and also by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions.

Experimental

A mixture of $3,4,5$-trimethoxybenzylidine (1 mmol), 1,3-indandione (1 mmol) and sarcosine (1 mmol) was refluxed in aqueous methanol. The resulting crude product was filtered off and recrystallized from methanol.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$	$D_{x}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=498.52$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1 /} / n$	Cell parameters from 3201
$a=10.3884(7) \AA$	reflections
$b=23.2621(14) \AA$	$\theta=2.4-23.0^{\circ} \AA$
$c=11.1685(7) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=108.633(1)^{\circ}$	$T=293(2) \mathrm{K}$
$V=2557.5(3) \AA^{3}$	Block, yellow
$Z=4$	$0.20 \times 0.19 \times 0.19 \mathrm{~mm}$

$$
\begin{aligned}
& D_{x}=1.295 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3201 \\
& \quad \text { reflections } \\
& \theta=2.4-23.0^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.20 \times 0.19 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.982, T_{\text {max }}=0.983$
15973 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.170$
$S=1.00$
5915 reflections
334 parameters

5915 independent reflections
3919 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-30 \rightarrow 26$
$l=-14 \rightarrow 14$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}_{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 4-\mathrm{N} 14$	$1.452(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.537(3)$
$\mathrm{C} 4-\mathrm{C} 11$	$1.556(2)$	$\mathrm{C} 13-\mathrm{N} 14$	$1.475(2)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.563(2)$		
$\mathrm{N} 14-\mathrm{C} 4-\mathrm{C} 11$	$101.0(1)$	$\mathrm{N} 14-\mathrm{C} 13-\mathrm{C} 12$	$106.3(1)$
$\mathrm{C} 4-\mathrm{C} 11-\mathrm{C} 12$	$101.0(1)$	$\mathrm{C} 4-\mathrm{N} 14-\mathrm{C} 13$	$108.5(1)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$102.8(1)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-H \cdots A$
C6-H6 . O 23	0.93	2.51	3.150 (3)	126
C12-H12 . O3	0.98	2.41	3.010 (2)	119
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 23$	0.93	2.58	3.207 (3)	125
$\mathrm{C} 35-\mathrm{H} 35 \mathrm{C} \cdots \mathrm{O} 32$	0.96	2.49	3.050 (4)	117
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 23^{\text {i }}$	0.86	2.45	3.125 (2)	136
N1-H1 \cdots N14 ${ }^{\text {i }}$	0.86	2.27	3.006 (2)	143
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{3 i}$	0.93	2.47	3.331 (3)	155
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O} 3^{\text {iii }}$	0.97	2.45	3.400 (2)	167
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 3{ }^{\text {iii }}$	0.93	2.58	3.336 (3)	139

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms, $1.2 U_{\text {eq }}(\mathrm{C})$ for other C-bound H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ for the indole H atom.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

DV thanks the University Grants Commission (UGC), New Delhi, for financial support.

References

Allen, F. H. (2002) Acta Cryst B58, 380-388.
Amal Raj, A., Raghunathan, R., Sridevikumari, M. R. \& Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Galeazzi, R., Geremia, S., Mobbilli, G. \& Orena, M. (1999). Tetrahedron: Asymmetry, 10, 587-605.
Govind, M. M., Govindaraj, J., Rajakannan, V., Velmurugan, D., Kim, M.-J., Srinivasan, P. C. \& Kannadasan, S. (2003). Acta Cryst. E59, o177o179.
Govindasamy, L., Velmurugan, D., Shanmuga Sundara Raj, S. \& Fun, H.-K. (1999). Acta Cryst. C55, 1315-1317.

Jeyabharathi, A., Ponnuswamy, M. N., Amal Raj, A., Raghunathan, R., Razak, I. A., Usman, A., Chantrapromma, S. \& Fun, H.-K. (2001). Acta Cryst. E57, o901-o903.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2002). Acta Cryst. C58, o277-o279.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zsolnai. L. (1997). ZORTEP. University of Heidelberg, Germany.

